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Abstract: Recently, an increasing use of power electronic facilities in industry has produced considerable harmonics and
interharmonics in power systems. The power supply quality is therefore seriously threatened. The discrete Fourier
transform (DFT) is currently the most important tool in signal analysis. However, a misapplication of DFT may result in
incorrect outcome because of some inherent limitations such as spectral leakage or aliasing effect etc. The existing
interharmonics even raise more difficulty in signal analysis than harmonics. To overcome this dilemma, this study
develops a strategy of leakage energy allocation method for both stationary and non-stationary interharmonics
identification. The proposed algorithm can regain its original interharmonics amplitude by restoring all spilled leakage
energy, and also finds its individual frequency component according to the distribution of spilled leakage energy. The
performance effectiveness of the proposed approach is verified using the numerical examples in terms of reliability,
rapid response and high-precision performance.
1 Introduction

The fast growing use of power electronics equipment and periodical
time-varying loads in electric power system has led to serious
harmonics and interharmonics problems. Interharmonics can be
thought of as the inter-modulation of the fundamental and harmonic
components of the system, and their frequencies are not an integer
of the fundamental components. They are generated by the loads
that are not pulsating synchronously with the fundamental power
system. Major sources have been found in variable-load electric
drives, double conversion system, cycloconverters, time-varying loads,
wind turbine and unexpected sources [1–5]. In addition to typical
problems caused by harmonics, interharmonics create some new
problems such as cathode ray tube (CRT) flicker, low-frequency
oscillation in a mechanical system, voltage fluctuations etc. Even
under low amplitude, the above phenomena may still exist [6–12].

The measurement of interharmonics does pose more difficulty
than harmonics. This is mainly due to spectral leakage sensitivity,
very low magnitude values in interests, waveform periodicity
change, and time-variant frequencies and amplitudes. To address
aforementioned measuring issues, IEC 61000-4-7 standard
provides a guide line for interharmonics measurement by grouping
methods, where 200 ms window width used for 12 cycles of
60 zHz systems and 10 cycles for 50 Hz systems [13]. A 5 Hz
frequency resolution with rectangular window is suggested to be
adopted. However, interharmonic frequencies may not be obtained
accurately under this framework [14]. The point is that in this
standard the central frequency of interharmonic group is defined as
the group frequency. This results in no exact interharmonic
frequency information available from the measurement.

Theoretically, it is not difficult to extensively apply some
harmonic analysis methods to interharmonics measurement by the
concept of Fourier transform [15–23]. In a practical circumstance,
however, there are still many concerns as follows [24]: (i) It is not
easy to extend to low power analogue model and time-domain
model. (ii) Direct injection method may cause inaccurate outcome
easily. (iii) Harmonic power flow method is very difficult in
modelling a non-linear system if the signal contains
interharmonics. (iv) Iterative harmonic analysis is unable to model
non-linear load. For the above reasons, the research work in
interharmonics measurement is still on the way [25–38].
2 Traditional measurement methods

2.1 Discrete Fourier transform (DFT) measurement

By Fourier theory, any repetitive waveform can be extended to a
series of sine waveforms in different frequencies which are a
multiple of fundamental system frequency. For a distorted
waveform is(t), it can be resprented using a complex number by

is(t) =
∑1
n=−1

cne
j2pft (1)

where cn = 1/T
�T
0 is(t)e

−j2pftdt, and T (=1/f ) is the period.

c0 =1/T �T
0 is(t) dt

( )
is the dc component.

Sample is(t) using the sampling rate fs with N points. Therefore
is(t) is expressed in a discrete form, that is, is[n]. Use DFT, and
the sequence of is[n] is transformed into an N-periodic sequence of
complex numbers

Is[k] =
1

N

∑N−1

n=0

is[n]e
−jk2pn/N (2)

The inverse DFT is given by

is[n] =
∑N−1

k=0

Is[k]e
jk2pn/N (3)

Assume is(t) is a periodic signal and its period is T. The fundamental
Fourier angular frequency (ω) is defined as

v = 2p

T
(4)

If the waveform is sampled using p periods where p > 1, Δω can be
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represented as

Dv = 2p

pT
= v

p
(5)

Accordingly, the Fourier fundamental frequency (Δf ) can be
written as

Df = 1

pT
= 1

pNsTs
= 1

NTs
= fs

N
(6)

where Ns W N/p, Ts W 1/fs and fs is the sampling rate. Note that
the Fourier fundamental period is defined as Tf = 1/Δf.

If the sample window length, that is, the duration of the sampled
data vector, is the multiple of fundamental period, the DFT method
can be well performed. However, the spectrum leakage problem is
unavoidable once the waveforem has a fundamental frequency
drift or contains interharmonics. When two steady-state signals,
which have constant amplitudes but different frequencies, are
linearily superimposed, its time-domain waveform is not
necessarily periodic. For example, two frequencies have the
relation of non-rational number (

��
3

√
or

��
5

√
). In addition, Table 1

shows components to form a waveform whch has both harmonics
and interharmonics. It can be seen that the waveforms not
symmetrical and periodic although every componet is periodic.
2.2 Concept of grouping method

IEC Standard suggests the concept of grouping for measuring the
interharmonics [13]. In a 50 Hz power system, the sampling time
window is 10 periods, and 60 Hz system is sampled 12 periods. It
means that the sampling time takes 200 ms, where the spectrum
resolution interval (Δf ) is 5 Hz. The profile of IEC subgrouping of
‘bins’ of harmonics/interharmonics can be seen more details in [13].

By the Parseval relation [39, 40], the power, P, of the waveform
can be written as

P = 1

N

∑N−1

n=0

is[n]
2 =

∑N−1

k=0

Is[k]
2 (7)

The individual power P[ fk] at the frequency fk can be written as [39]

P[fk ] = Is[k]
2 + Is[N − k]2 = 2Is[k]

2 (8)

where k = 0,1, 2, …, N/2− 1.
The amplitude of mth harmonic at the frequency fk can be

expressed as

Am[fk ] =
������
P[fk ]

√
=

��
2

√
Is[k] (9)

where m = 1,2, …, M.
The harmonic power at fk may spill surrounding to neighbours. By

the concept of grouping, all dispersed power within adjacent
frequencies can be regarded as a ‘group power’ [13]. In theory, the
Table 1 Components of system waveform

Frequency Amplitude Phase, deg

50 1 0
102 0.2 0
121 0.35 0
139 0.1 0
153 0.1 0
250 0.4 0
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‘group power’, can be restored as

P∗
m[fk ] =

∑+t

Dk=−t

(Am[fk+Dk ])
2 (10)

where t = 0, 1, 2, 3, … is the group bandwidth.
From (10), the harmonic amplitude can be obtained as

A∗
m[fk ] =

�������
P∗
m[fk ]

√
(11)
3 The proposed algorithm

3.1 The relation between harmonic frequency and
dispersed energy

Based on the empirical observation, the relation between harmonic
frequency and dispersed energy can be induced and defined.
Consider the following cases based on DFT analysis. Case 1:
Fig. 1a reveals that the second larger magnitude (Am[ fk+1]) at fk+1
is located at the right side of the dominant frequency at fk, where
Am[ fk] > Am[ fk+1] . Generally, fk may be wrongly interpreted as the
dominant harmonic frequency. Actually, it is found that the true
frequency known as an interharmonic should be equal to fk plus
the ‘frequency deviation’ (Δfk) defined in (12). It is confirmed that
higher Am[ fk+1] will introduce more amount of deviation (Δfk)
distant from fk. Similarly, in Fig. 1b Case 2 shows
another situation that the second larger amplitude (Am[ fk] ) at fk is
located at the left side of the dominant frequency at fk+1, where
Fig. 1 Relation between harmonic frequency and dispersed energy

a Small frequency deviation
b Big frequency deviation

799



Fig. 2 Depict of piece-overlapped sampling
Am[ fk] < Am[ fk+1] . In this case, fk+1 may be wrongly interpreted as
the dominant harmonic frequency. Like Case 1, the true
interharmonic frequency in this case should be equal to fk plus the
‘frequency deviation’ (Δfk). Higher Am[ fk+1] will also introduce
more amount of deviation (Δfk) distant from fk.
Fig. 3 Flowchart of the proposed LEA scheme
3.2 Proposed leakage energy allocation (LEA) algorithm

Actually, it is very difficult to model the interharmonics using
mathematic equations theoretically. Nevertheless, it is found that
the frequency deviation amount has a relation with the dispersed
energy distribution [25]. Based on the inductive method from
empirical results, the frequency of interharmonic can be
represented by the dominant frequency ( fk) plus ‘frequency
deviation’ (Δfk), that is, fk + Δfk. Note that the dominant frequency
( fk) can be directly obtained from DFT. Besides, the principle can
be also applied to the system frequency deviation situation.

The frequency deviation range (FDR) is defined as

Dfk =
��������������������∑+t

Dk=1 Am[fk+Dk ]
2

√
���������������������∑0

Dk=−t Am[fk+Dk ]
2

√
+

��������������������∑+t
Dk=1 Am[fk+Dk ]

2
√ Df (12)

where Δf is a factor of fundamental frequency, that is, 50 Hz. In other
words, Δf must be 1, 2, 5, 10, 25, 50.

According to the analysis of group-harmonic frequency deviation,
the restored amplitude (RA) can be used for retrieving dispersed
amplitude, being defined as

RA =
������������������
∑+t

Dk=−t

Am[fk+Dk ]
2

√√√√ (13)

where t = 0, 1, 2, 3,….
In order to track time-varying harmonics/interharmonics more

rapidly, the piecewise-overlapped method is proposed. The
principle is based on the idea of overlapped sampling period. It
means that the signal analysed using DFT can be overlapped for a
certain period. Therefore it becomes easier to track the variation of
dynamic signal. The illustration of this method is shown in Fig. 2.
The sampling period is set as Tf, where the number n (=1, 2, 3,
4, …) denotes the sampling sequence with a Tf time period, and
next number, that is, n + 1, has a overlapped period (To) with the
current number n.

The overlapped percentage η is defined as the ratio of overlapped
period to the sampling sequence as follows

h = overlapped period (To)

sampling period (Tf )
(14)
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The flowchart of the proposed LEA algorithm shown in Fig. 3 is
described briefly, as follows:

(1) Set fs, N, t, η.
(2) Sample the power line waveform is(t) using Tf sampling time.
(3) Implement DFT.
(4) Determine the number (M ) of dominant harmonics/
interharmonics.
(5) Find the location of dominant frequency fk.
(6) Calculate Δfk, RA.
(7) Find the respective frequency and amplitude of the harmonic/
interharmonic, that is, f ′k = fk + Dfk , A

′
k = RA.

(8) M =M− 1.
(9) Check if M = 0. If yes, continue next step. Otherwise, return to
step (5). Note that the procedure is repeated until all harmonics/
interharmonics are obtained.
(10) Check if the time for η is up. If yes, go back to step (2).
Otherwise, continue next step.
(11) Go back to step (10) until the system is requested to stop.
4 Model validity

The proposed LEA model is based on DFT, and its implementation
requires only one more algebra computation step. Therefore the
model validity is analogous to the real measurement system using
DFT. For this reason, the numerical examples can be used for test
with no concession between its potential applications and model
validity.

4.1 Stationary waveform analysis with fundamental
frequency drift

Firstly, a stationary waveform with fundamental frequency drift is
considered. The numerical example that may represent a possible
signal distortion situation is employed in this study [41–44]. It
indicates that ia has 0.4 Hz drift at the fundamental frequency ( f1).
It also contains two interharmonics ( f2 and f3)

ia = a1 sin (2pf1t + w1)+ a2 sin (2pf2t + w2)+ a3 sin (2pf3t + w3)

(15)

where f1 = 49.6 Hz is the fundamental system frequency that has 0.4
Hz drift from 50 Hz. The f2 and f3 are 123, and 327 Hz, respectively.
Dfk =
��������������������������������������
0.992 + 0.0722 + 0.0382 + 0.0262

√
��������������������������������������
0.0242 + 0.032 + 0.0442 + 0.0882

√

+ ��������������������������������������
0.992 + 0.0722 + 0.0382 + 0.0262

√

RA =
�����������������������������������������
0.0242 + 0.032 + 0.0442 + 0.0882 + 0

√

Dfk =
��������������������������������������
0.222 + 0.0622 + 0.0352 + 0.0242

√
��������������������������������������
0.0282 + 0.0382 + 0.0592 + 0.152

√

+ ������������������������������������
0.222 + 0.0622 + 0.0352 + 0.024

√

RA =
��������������������������������������������
0.0282 + 0.0382 + 0.0592 + 0.152 + 0.22

√

Dfk =
���������������������������������������
0.0762 + 0.0282 + 0.0182 + 0.0132

√
��������������������������������������
0.0132 + 0.0192 + 0.0322 + 0.112

√

+ �������������������������������������
0.0762 + 0.0282 + 0.0182 + 0.013

√

RA =
�����������������������������������������������
0.0132 + 0.0192 + 0.0322 + 0.112 + 0.076

√
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The a1 = 1.0, a2 = 0.3 and a3 = 0.15 are amplitudes. The j1 = 0°,
j2 = 12° and j3 = 35° are phase degrees.

Consider the case: Δf = 5 Hz ( fs = 1 kHz, N = 200, Tf = 0.2 s), η = 0,
t = 4. Spectrum of ia based on DFT is shown in Fig. 4a. It notes that
the system frequency and all interharmonics have serious spilled
energy around their frequency because of the leakage problem.
Using LEA method, the result is accurate, shown in Fig. 4b. For
details, it is discussed as follows:

a. System frequency f1: Initially, M = 3. The FDR beyond 45 Hz can
be calculated as (see (16))

The 45 Hz ( fk) plus 4.5 Hz (Δfk) is equal to 49.5 Hz, almost matching
the real value ( f1 = 49.6 Hz) (see (17))

The RA is equal to 1.0, completely matching the real value (a1 = 1.0).
b. Interharmonic ( f2): In this stage,M = 2. The FDR beyond 120 Hz
can be calculated as (see (18))

The 120 Hz ( fk) plus 3 Hz (Δfk) is equal to 123 Hz, matching the real
value ( f2 = 123 Hz) (see (19))

The RA is almost equal to 0.3, matching the real value (a2 = 0.3).
c. Interharmonic ( f3): In this stage,M = 1. The FDR beyond 325 Hz
can be calculated as (see (20))

The 325 Hz ( fk) plus 2 Hz (Δfk) is almost equal to 327 Hz, matching
the real value ( f3 = 327 Hz) (see (21))

The RA is very close to 0.15, matching the real value (a3 = 0.15).
After this process, M = 0 so that the calculation of individual
frequency and amplitude stops.

Some more cases using Δf = 1, 2, 10 and 25 Hz, respectively, have
been also tested and achieved similar performance outcomes. It is
concluded in Table 2. Obviously, DFT cannot give an accurate
solution except f2 and f3 components using Δf = 1 Hz. For the
proposed LEA scheme, all components identification using Δf = 1,
2, 5, 10 Hz can achieve a very correct value for either frequency
or amplitude. On the other hand, Δf using 25 Hz is unable to
obtain a satisfactory result because of no remarkable adjacent
dispersed energy. Actually, it is clear that the sampling time (Tf)
will be reduced if a large Δf up to 10 Hz is chosen, not paying the
cost of accuracy. However, in a view of general practice, the risk
of reciprocal interference between surrounding harmonics/
× 5 ≃ 0.994

0.106+ 0.994
× 5 ≃ 4.52 � 4.5

(16)

�������������������������������������
.992 + 0.0722 + 0.0382 + 0.0262 ≃ 1.00 (17)

��
2

× 5 ≃ 0.236

0.172+ 0.236
× 5 ≃ 2.89 � 3

(18)

����������������������������������
2 + 0.0622 + 0.0352 + 0.0242 ≃ 0.29 � 0.3 (19)

��
2

× 5 ≃ 0.0835

0.12+ 0.0835
× 5 ≃ 2.05 � 2

(20)

��������������������������������
2 + 0.0282 + 0.0182 + 0.0132 ≃ 0.146 � 0.15 (21)
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Fig. 4 Spectrum of ia using Δf = 5 Hz

a Spectrum of ia with DFT
b Spectrum of ia with LEA

Table 2 Result comparison between DFT and LEA

Δf

Real values Δf = 1 Hz Δf = 2 Hz

DFT LEA DFT LEA D

f1 = 49.6, Hz 49 49.6 48 49.6 4
f2 = 123, Hz 123 123 122 123 1
f3 = 327, Hz 327 327 326 327 3
a1 = 1.0 1.0 1.01 0.93 1.03 0
a2 = 0.3 0.3 0.3 0.19 0.29 0
a3 = 0.15 0.15 0.15 0.095 0.146 0.

Fig. 5 Frequency tracking curve of ia(t)
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interharmonics spilled energy may arise once a larger Δf is used. To
reach a compromise, Δf = 5 Hz is taken an account in this study.

4.2 Non-stationary waveform tracking analysis

For non-stationary waveform analysis, we set Δf = 5 Hz, η = 0.5 and
t = 4 for time-variant frequency and amplitude tracking.

4.2.1 Time-variant frequency tracking: In order to verify the
capability of time-variant frequency tracking with the proposed
algorithm, the waveform of ia (t) using (22) has been tested

ia(t) = a1 sin (2pf1t + f1)+ a2 sin (2pf2t + f2)

+ a3 sin (2pf3t + f3) (22)

where a1 = 1.0, a2 = 0.23, a3 = 0.14, f1 = 50 Hz, f2 = 29 Hz, f3 = 122 Hz,
f1 = 8°, f2 = 52°, f3 = 23°.

Assume that the waveform frequency components of ia (t) change
every 0.1 s, as follows. The frequency tracking curve using LEA is
shown in Fig. 5. We see that each frequency variety can be
tracked successfully

1. t = 0.0 s : f2 = 29 Hz, f3 = 122 Hz;
2. t = 0.1 s : f2 = 28 Hz, f3 = 124 Hz;
3. t = 0.2 s : f2 = 25 Hz, f3 = 121 Hz;
4. t = 0.3 s : f2 = 34 Hz, f3 = 120 Hz;
5. t = 0.4 s : f2 = 35 Hz, f3 = 113 Hz;
6. t = 0.5 s : f2 = 38 Hz, f3 = 117 Hz;
7. t = 0.6 s : f2 = 37 Hz, f3 = 114 Hz;
8. t = 0.7 s : f2 = 33 Hz, f3 = 117 Hz;
9. t = 0.8 s : f2 = 32 Hz, f3 = 120 Hz;
10. t = 0.9 s : f2 = 31 Hz, f3 = 115 Hz;
11. t = 1.0 s : f2 = 30 Hz, f3 = 122 Hz.

4.2.2 Time-variant amplitude tracking: Consider the situation
with time-variant amplitude using (23), and the waveform of ib(t) is
Δf = 5 Hz Δf = 10 Hz Δf = 25 Hz

FT LEA DFT LEA DFT LEA

5 49.5 40 49.5 50 50
20 123 120 123 125 127
25 327 320 327 300 322
.99 1.00 1.0 1.02 1.0 1.0
.22 0.29 0.26 0.29 0.31 0.31
076 0.146 0.13 0.148 0.15 0.16
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Fig. 6 Waveform changing of ib(t)

a Waveform of ib(t)
b Amplitude tracking curve
shown in Fig. 6a. Its amplitude that contains both interharmonics
(312 and 425 Hz with different time constants) is decaying down
to zero within 1 s. From the results shown in Fig. 6b, it is obvious
that the amplitude can be also tracked successfully

ib(t) = a sin (2pfi1t)e
−t/Tc1 + b sin (2pfi2t)e

−t/Tc2 (23)

where a = 1, fi1 = 312 Hz, 1/Tc1 = 7, b = 0.5, fi2 = 425 Hz, 1/Tc2 = 6.
As above, the changes in both time-variant amplitude and

frequency are tested using the same interval, that is, 0.1 s. It is
realised that the proposed model computes both interharmonic
amplitude and frequency at the same time. Consequently, it is
obvious that simultaneous frequency and amplitude changes can
be tracked simultaneously.
4.3 Discussion for selection of group bandwidth (t)

Interharmonics is asynchronous with fundamental and harmonics so
that using DFT for spectrum analysis will cause spectral leakage if
the waveform contains interharmonics. In such a situation, the
power of the harmonic at fk may disperse over a frequency band. It
is noted that the larger group bandwidth (t) may restore all
leakages and thus regain the actual amplitude/frequency. However,
with a large bandwidth the ‘group power’ may cover some
harmonic contents at distant frequencies. For this reason, the group
bandwidth (t) should be chosen as large as possible but small
enough to avoid the overlap between two neighbouring harmonic
groups. Based on this principle, t is chosen as 4 for selecting
Δf = 1, 2 and 5 Hz, and t is chosen as 3 for selecting Δf = 10 Hz.
However, t should be set as 1 for Δf = 25 Hz to exclude possible
dispersed power interaction.
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5 Conclusions

The DFT is still widely used in signal measurement in industry.
However, it may not be applicable in some circumstances such as
non-stationary or interharmonics analysis. This paper has
developed an LEA approach for both stationary and non-stationary
interharmonics evaluation in power systems. It can recover all
spilled leakage energy to obtain its original interharmonics
amplitude. Also, every individual frequency component can be
calculated using the principle of the distribution state of spilled
leakage energy. In this study, Δf = 5 Hz is selected for the trade-off
between the sampling time and measurement accuracy. The
piecewise-overlapped method that is integrated with the LEA
scheme can be used to track the signal variation more quickly. For
industrial applications, the implementation cost of the proposed
LEA is lower than traditional grouping methods, where it only
requires one more number of operation than DFT. Also, no
extended memory is needed in general computers or
microprocessors. Accordingly, it can be easily applied to
DFT-based instruments owing to its simple mathematics basis of
DFT. For future work, it recommends that this research can be
extended and focused on the separation or interfere from spectral
leakage between very close harmonics and interharmonics.
6 References

1 Lin, H.C.: ‘Sources, effects and modelling of interharmonics’, Math. Probl. Eng.,
2014, 2014, pp. 1–10

2 Qian, H., Ahao, R., Chen, T.: ‘Interharmonics analysis based on interpolating
windowed FFT algorithm’, IEEE Trans. Power Deliv., 2007, 22, (2),
pp. 1064–1069

3 Rifai, M.B., Ortmeyer, T.H., McQuillan, W.J.: ‘Evaluation of current
interharmonics from AC drives’, IEEE Trans. Power Deliv., 2000, 15, (3),
pp. 1094–1098

4 Zhang, Q., Liu, H., Chen, H., Li, Q., Zhang, Z.: ‘A precise and adaptive algorithm
for interharmonics measurement based on iterative DFT’, IEEE Trans. Power
Deliv., 2008, 23, (4), pp. 1728–1735

5 Testa, A., Akram, M.F., Burch, R., et al.: ‘Interharmonics: Theory and modeling’,
IEEE Trans. Power Deliv., 2007, 22, (4), pp. 2335–2348

6 Lin, H.C.: ‘Fast tracking of time-varying power system frequency and harmonics
using iterative-loop approaching algorithm’, IEEE Trans. Ind. Electron., 2007,
54, (2), pp. 974–983

7 Sueker, K.H., Hummel, S.D., Argent, R.D.: ‘Power factor correction and harmonic
mitigation in a thyristor controlled glass melter’, IEEE Trans. Ind. Appl., 1989, 25,
(6), pp. 972–975

8 Steeper, D.E., Stratford, R.P.: ‘Reactive compensation and harmonic suppression
for industrial power systems using thyristor converters’, IEEE Trans. Ind. Appl.,
1976, IA-12, (3), pp. 232–254

9 Barros, J., Prez, E., Pigazo, A., Diego, R.I.: ‘Simultaneous measurement of
harmonics, interharmonics and flicker in a power system for power quality
analysis’. Fifth Int. Conf. Power System Management and Control, April 2002,
pp. 100–105

10 Gallo, D., Langella, R., Testa, A.: ‘Interharmonics, Part 1: Aspects related to
modeling and simulation’. Sixth Int. Workshop on Power Definitions and
Measurements under Non-Sinusoidal Conditions, Milano, October 2003,
pp. 168–173

11 Karimi-Ghartemani, M., Iravani, M.R.: ‘Measurement of harmonics/
inter-harmonics of time-varying frequency’, IEEE Trans. Power Deliv., 2005,
20, (1), pp. 23–31

12 Gallo, D., Langella, R., Testa, A.: ‘Interharmonics, Part 2: aspects related to
measurement and limits’. Sixth Int. Workshop on Power Definitions and
Measurements under Non-Sinusoidal Conditions, Milano, October 2003,
pp. 174–181

13 IEC 61000-4-7: Electromagnetic compatibility (EMC) Part 4: testing and
measurement techniques Section 7: general guide on harmonics and
interharmonics measurements and instrumentation for power supply systems
and equipment connected thereto, 2002

14 Li, C., Xu, W., Tayjasanant, T.: ‘Interharmonics: basic concepts and techniques for
their detection and measurement’, Electr. Power Syst. Res., 2003, 66, (1),
pp. 39–48

15 Lin, H.C.: ‘Intelligent neural network based adaptive power line conditioner for
real-time harmonics filtering’, IEE Proc.-Gener. Transm. Distrib., 2004, 151,
(5), pp. 561–567

16 Moo, C.S., Chang, Y.N.: ‘Group-harmonic identification in power systems with
nonstationary waveforms’, IEE Proc.-Gener. Transm. Distrib., 1995, 142, (5),
pp. 517–522

17 Chen, S., Lai, Y.M., Tan, S.-C., Tse, C.K.: ‘Fast response low harmonic distortion
control scheme for voltage source inverters’, IET Power Electron., 2009, 2, (5),
pp. 574–584

18 Madhan, M.D., Singh, B., Panigrahi, B.K.: ‘Harmonic optimised 24-pulse voltage
source converter for high voltage DC systems’, IET Power Electron., 2009, 2, (5),
pp. 563–573
803



19 Kwok, H.K., Jones, D.L.: ‘Improved instantaneous frequency estimation using an
adaptive short-time Fourier transform’, IEEE Trans. Signal Process., 2000, 48,
(10), pp. 2964–2972

20 Macias, J.A., Gomez, A.: ‘Self-tuning of Kalman filters for harmonic computation’,
IEEE Trans. Power Deliv., 2006, 21, (1), pp. 501–503

21 Lin, H.C.: ‘Intelligent neural network based fast power system harmonic detection’,
IEEE Trans. Ind. Electron., 2007, 54, (1), pp. 43–52

22 Bettayeb, M., Qidwai, U.: ‘Recursive estimation of power system harmonics’,
Elect. Power Syst. Res., 1998, 47, pp. 143–152

23 Soliman, S.A., Alammari, R.A., El-Hawary, M.E., Mostafa, M.A.: ‘Effects of
harmonic distortion on the active and reactive power measurements in the time
dominant: a single phase system’. 2001 IEEE Porto Power Tech Conf., Porto,
September 2001, pp. 1–6

24 Chang, G.W., Chen, C.I., Liu, Y.J., Wu, M.C.: ‘Measuring power system
harmonics and interharmonics by an improved fast Fourier transform-based
algorithm’, IET Gener. Transm. Distrib., 2008, 2, (2), pp. 193–201

25 Lin, H.C.: ‘Inter-harmonic identification using group-harmonic weighting
approach based on the FFT’, IEEE Trans. Power Electron., 2008, 23, (3),
pp. 1309–1319

26 Javier, V., Jorge, P.: ‘Real-time interharmonics detection and measurement based
on FFT algorithm’. Applied Electronics, Pilsen, 2009, pp. 259–264

27 Chang, G.W., Chen, C.-I., Liang, Q.-W.: ‘A two-stage ADALINE for harmonics
and interharmonics measurement’, IEEE Trans. Ind. Electron., 2009, 56, (6),
pp. 2220–2228

28 Gu, I.Y.-H., Kim, T., Powers, E.J., Grady, W.M., Arapostathis, A.: ‘Detection of
flicker caused by interharmonics’, IEEE Trans. Instrum. Meas., 2009, 58, (1),
pp. 152–160

29 Singh, G.K.: ‘Power system harmonics research: a survey’, Eur. Trans. Electr.
Power, 2009, 19, (2), pp. 151–172

30 Chen, C.-I., Chang, G.W.: ‘Virtual instrumentation and educational platform for
time-varying harmonic and interharmonic detection’, IEEE Trans. Ind. Electron.,
2010, 57, (10), pp. 3334–3342

31 Chang, G.W., Chen, S.-K., Su, H.-J., Wang, P.-K.: ‘Accurate assessment of
harmonic and interharmonic currents generated by VSI-Fed drives under
unbalanced supply voltages’, IEEE Trans. Power Deliv., 2011, 26, (2),
pp. 1083–1091
804
32 Nassif, A.B., Yong, J., Mazin, H., Wang, X., Xu, W.: ‘An impedance-based
approach for identifying interharmonic sources’, IEEE Trans. Power Deliv.,
2011, 26, (1), pp. 333–340

33 Ramirez, A.: ‘The modified harmonic domain: interharmonics’, IEEE Trans.
Power Deliv., 2011, 26, (1), pp. 235–241

34 Lin, H.C.: ‘Power harmonics and interharmonics measurement using recursive
group-harmonic power minimizing algorithm’, IEEE Trans. Ind. Electron., 2012,
59, (2), pp. 1184–1193

35 Hajibeigy, M., Farsadi, M., Nazarpour, D., Golahmadi, H., Hajibeigy, M.:
‘Harmonic suppression in HVDC system using a modified control method for
hybrid active DC filter’, Eur. Trans. Electr. Power, 2012, 22, (3), pp. 294–307

36 Sadinezhad, I., Agelidis, V.G.: ‘Real-time power system phasors and harmonics
estimation using a new decoupled recursive-least-squares technique for DSP
implementation’, IEEE Trans. Ind. Electron., 2013, 60, (6), pp. 2295–2308

37 Jain, S.K., Singh, S.N.: ‘Fast harmonic estimation of stationary and time-varying
signals using EA-AWNN’, IEEE Trans. Instrum. Meas., 2013, 62, (2), pp. 335–343

38 Lin, H.C.: ‘Accurate harmonic/inter-harmonic estimation using DFT-based
group-harmonics energy diffusion algorithm’, Can. J. Electr. Comput. Eng.,
2014, 36, (4), pp. 158–171

39 Oppenheim, A.V., Schafer, R.W.: ‘Discrete-time signal processing’ (Prentice-Hall,
1989)

40 Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: ‘Numerical recipes –
the art of scientific computing’ (Cambridge University, Cambridge, 1986),
pp. 420–429

41 Nguyen, T.T.: ‘Parametric harmonic analysis’, IEE Proc.-Gener. Transm. Distrib.,
1997, 144, (1), pp. 21–25

42 Pham, V.L., Wong, K.P.: ‘Wavelet-transform-based algorithm for harmonic
analysis of power system waveforms’, IEE Proc.-Gener. Transm. Distrib., 1999,
146, (3), pp. 249–254

43 Lin, H.C., Lee, C.S.: ‘Enhanced FFT based parametric algorithm for simultaneous
multiple harmonics analysis’, IEE Proc.-Gener. Transm. Distrib., 2001, 148,
pp. 209–214

44 Lin, H.C.: ‘Power harmonics and interharmonics measurement using recursive
group-harmonic power minimizing algorithm’, IEEE Trans. Ind. Electron., 2012,
59, (2), pp. 1184–1193
IET Gener. Transm. Distrib., 2015, Vol. 9, Iss. 9, pp. 798–804
& The Institution of Engineering and Technology 2015


